QUIZ 12: ABSTRACT ALGEBRA

Problem 1: Consider \mathbb{H} to be the group ring $\mathbb{R}[Q_8]$ defined 1 to be all elements of the form

$$x_1 \cdot 1 + x_2 \cdot (-1) + x_3 \cdot i + x_4 \cdot (-i) + x_5 \cdot j + x_6 \cdot (-j) + x_7 \cdot k + x_8 \cdot (-k)$$
 with x_i elements of \mathbb{R} for $i = 1, \dots, 8$.

Part A. Create ring homorphisms $\mathbb{R} \to \mathbb{H}$ and $\mathbb{H} \to \mathbb{R}$.

Part B. Is \mathbb{C} a subring of \mathbb{H} ? Why or why not?

Part C. Consider the ideal $I = \langle i \rangle := \{r \cdot i \mid r \in R\} \subseteq R$. Show that I is a non-proper ideal – i.e. show that $I = \mathbb{H}$.

Problem 2: Let I and J be two left-ideals of a ring R. Define I + J to be the subset of R given by

$$I + J := \{ f + g \mid f \in I, g \in I \}$$

Show that I + J is also an ideal of R – i.e., show that I + J is a subgroup of (R, +) and that I + J has the left absorption property.

¹The non-commutative division ring \mathbb{H} is known as the Quaternions and is the simplest model of such an algebraic structure. Weddererburg's Little Theorem states that every finite division ring D is commutative – i.e., D is a field in that case.